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I a)1) If  
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(with the usual notations) holds for some P and some 
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prove that the same holds for every refinement of P.

OR

    2) If f is continuous on [a,b] then prove that  
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 on [a,b].
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b) Suppose 
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on [a,b], 
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, 
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 is continuous on [m,M], and h(x) = 
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(f(x)) on [a,b]. Then prove that 
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c) State and prove the fundamental theorem of Calculus for a function 
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on [a,b].  (9 + 6) 

OR

d) Let 
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 be a monotonically increasing function on [a,b] and let 
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on [a,b]. If  f is a bounded real function on [a,b] then prove that 
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on [a,b] 
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on [a,b].              In this case 
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e) If f maps [a,b] into Rk and if 
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 for some monotonically increasing function 
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 on [a,b]  then prove that 
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(8+7)

II. a) 1) Let 
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 be the set of all invertible operators on 
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R

.Then prove that 
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is open and the mapping  A 
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A-1 is continuous on 
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OR

         2) Let f be a differentiable function from E into Rm where E is an open set contained in Rn. Then prove that the linear transformation from Rn to Rm is unique. 

              (5)


      b)  Define Convex set and prove: Suppose that 
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 maps a convex set E 
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 is differentiable on E and there exists a constant M such that 
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. Also prove that if f’(x) = 0 for all x in E then f is constant. 

      c) State and prove the chain rule on the differentiability of a function.                        
(7+8)

OR

d) Suppose that 
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 maps a convex set E 
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 into 
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. Let 
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 is differentiable at x 
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E. Then prove that the partial derivatives Dj fi (x) exists and 
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, where {e1, e2, …, en} and  {u1, u2, …, um} are the standard basis of 
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 and 
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respectively. 
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III.a) 1) Let 
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denote the set of all continuous, complex valued, bounded functions on X. prove that 
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is a complete metric space. 

OR

2) If 
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 is a sequence of continuous functions on E, and if 
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uniformly on E, then prove that f is continuous on E. Is the converse true? Justify your answers.

b) State and prove the Weierstrass approximation theorem.  



(15)

OR

c) Let 
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be monotonically increasing on [a,b]. Suppose 
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on [a,b], for n = 1,2,3,… , and suppose 
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uniformly on [a,b], Then prove that 
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d) Define equicontinuity of a function and prove: If K is compact, if 
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for n = 1,2,3,… and if {fn}  is pointwise bounded and equicontinuous on K, then

(i)   {fn}  is uniformly bounded on K, 

(ii)  {fn}  contains a uniformly convergent subsequence. 
 



(6+9)

IV. a)1) Prove that ( 
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OR

2) If 
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then prove that 
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where E is a periodic function with period 2
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b) Define Gamma function and derive a simple approximate expression for 
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 when x takes on very large values.

c) Derive the relationship between Beta and Gamma function. 



 (10+5) 

OR

d) Explain with usual notations: Fourier series, orthogonal and orthonormal system. And prove the following theorem: Let {(n } be orthonormal on [a,b]. Let S n (x) = 
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 be the nth partial sum of the Fourier series of f and suppose that  tn (x) = 
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. Then prove that 
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 and equality holds if and only if (m =  c m , m = 1,2, …,n. 
 (15)


V) a) 1) If f has a derivative of order n at a point x0, then prove that the Taylor Polynomial 
[image: image59.wmf]()()

0

()()

0

!

0

kx

n

f

k

Pxxx

k

k

æö

ç÷

=-

ç÷

ç÷

=

èø

å

is the unique polynomial such that 
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 whatever Q may be in P ( n ).

OR

2) Define Chebyshev polynomial and list down its properties.



(5)

b)  Given n+1 distinct points x 0,x 1, …, x n and n+1 real numbers f (x0),  f (x1),  …,       f (x n) not necessarily distinct, then prove that there exists one and only one polynomial P of degree ( n such that P (x j) = f (x j) for each j = 0,1,2,…,n.  and the polynomial is given by the formula 
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c) Let P n+1 (x)= x n+1 + Q(x) where Q is a polynomial of degree ( n and let 
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maximum of (P n+1 (x)(, -1 ( x ( 1.  Then prove that we get the inequality 
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. Moreover , prove that  
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, where T n+1 is the Chebyshev polynomial of degree n+1. 










(7 + 8)


OR

c) Let f be a continuous function on [a,b] and assume that T is a polynomial of degree ( n that best approximates f on [a,b] relative to the maximum norm. Let R(x) = f (x) –T(x) denote  the error in the approximation and let D = 
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. Then prove that 

(() If D = 0 the function R is identically zero on [a,b].

(() If D > 0, the function R has at least (n+1) changes of sign on [a,b]. 


(15)
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